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ABSTRACT
Eutrophication phenomenon is one of the most common water quality problems in reservoirs in many regions. 
Determining the trophic status of the reservoirs is not a precise process and contains vagueness. Fuzzy set and 
entropy theories are concepts which can model uncertainty and imprecision in the data and the analysis. In this 
study, an Entropy-based Fuzzy Eutrophication Index model has been developed for classification of trophic level 
of Satarkhan Reservoir in the north-western part of Iran. Through the Fuzzy Synthetic Evaluation technique, 
trophic levels were considered as fuzzy sets and a fuzzy evaluation matrix was formed by defining the membership 
function of water quality indicators. The indicators were weighed by integrating both objective and subjective 
criteria. In this regard, the entropy method was used to determine the objective weights of the indicators based 
on the amount of useful information available in the data set and the subjective weight was determined by the 
analytical hierarchy process using a pairwise comparison done by the expert judgment. Classification of the 
trophic status of the reservoir was determined by multiplying the weighed vector by the fuzzy evaluation matrix. 
The results showed that critical months for eutrophication in Satarkhan reservoir occur in autumn and spring after 
the overturning phenomena. The strength of the results of developed entrophy-based fuzzy entrophication index is 
that the trophic level in each month was expressed with a degree of certainty. Also due to the ability of the model 
to integrate different kinds of objective and subjective quality observations considering the information included 
in the data, the proposed model is more robust than the previous index models such as Trophic Status Index and 
fuzzy trophic index.
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INTRODUCTION
Eutrophication, or the nutrient enrichment of 
aquatic systems, is a natural aging process 
of a waterbody that contains an undesirable 
abundance of algae growth. This process is 
usually accelerated by excessive nutrient inputs, 
thereby causing the water quality to deteriorate 
impairing the intended uses of reservoirs such as 
aquatic life and fisheries, drinking water supply 
and recreational use. 
USEPA (1999) has established the Total Maximum 
Daily Load (TMDL) process for impaired 
*Corresponding author: E-mail: taherion@ut.ac.ir
Tel: 0913 305 42 77

waterbodies especially eutrophied lakes and 
reservoirs. This process determines the allowable 
nutrient loading to a reservoir to preserve the 
water quality standards. To develop a TMDL, 
it is necessary to have one or more quantitative 
measures or indictors that can be used to evaluate 
the trophic level of the reservoir. Indicators for a 
nutrient TMDL include parameters such as total 
phosphorus, total nitrogen and chlorophyll a. 
Once an indicator is selected, a target value for the 
indicator must be established which classifies the 
impaired and unimpaired state of the waterbody 
(USEPA, 1999). Trophic state is not obtained 
through a unique method without vagueness. 
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Traditional classification methods of trophic state 
levels such as the Carlson index (Carlson, 1977) 
utilizes crisp sets, and the index values which 
are close or far from the upper or lower limits 
are considered in the same classes. Moreover, 
several parameters are considered in trophic level 
determination and the limits between different 
classes have inherent imprecision (Lu et al., 1999; 
Silvert, 2000). Therefore, multivariable indexing 
allows for a more thorough investigation of water 
quality and a more continuous description of the 
eutrophication process than a single variable 
index system (Lu and Lo, 2002).
The Fuzzy Set Theory (Zadeh, 1965) which 
introduced the specification of uncertainty by 
membership functions has been used by Silvert 
(2000) to develop the environmental indices. 
Fuzzy-based techniques can provide a mean for 
measuring the intensity of exceeding regulated 
thresholds with the help of memberships to 
various water quality levels. It has been applied 
extensively in water quality classification of water 
resources. The majority of research in this field is 
centered on fuzzy synthetic evaluation and fuzzy 
clustering analysis (Chang et al, 2001). 
Fuzzy Synthetic Evaluation (FSE) uses a 
numerical scale to represent the water quality 
status. It aggregates the defined fuzzy values of 
the water quality parameters to various quality 
features such as eutrophication of reservoirs. 
FSE is used to classify samples at a known center 
of classification (or group), whereas the fuzzy 
clustering analysis (FCA) is used to classify 
samples according to their relationships when this 
center is unknown (Lu et al., 1999). FSE classifies 
samples for known standards and guidelines, and 
is a modified version of traditional synthetic 
evaluation techniques. This technique has been 
used in the following studies:
Lu et al., (1999) studied the feasibility of applying 
the FSE method to the quality of water in a 
reservoir. According to the results, FSE does a 
better job in detecting the trends of water quality 
changes than the Carlson Index. Chang et al, 
(2001) used FSE in water quality classification 
of a river. Lu and Lo (2002) developed a 
multivariable trophic state indexing method, 
for diagnosing water quality and evaluated this 
method using the FSE technique.

Chang et al., (2001) used three fuzzy synthetic 
evaluation approaches to assess water quality 
conditions of a river and compared the results 
with the conventional Water Quality Index (WQI) 
for rivers. Estimation of the weights of quality 
parameters was drawn from a commonly used 
weight information database which is not based 
on the objective importance of the parameters.
Liou and Lo (2005), developed a fuzzy index 
model for trophic evaluation of reservoirs based 
on the formula of similarity membership functions 
in the fuzzy c-means (FCM) clustering algorithm. 
The weights of water quality indicators were not 
considered in this analysis. Also Karamouz et al., 
(2004) applied fuzzy c-means clustering analysis 
in order to zone a river based on the water quality 
values at different monitoring stations along the 
river.
Icaga (2007) proposed an index model for water 
quality classification using fuzzy logic. In this 
survey, quality classes are transformed into 
continuous form and then the concentration values 
of the different quality parameters are summed 
using fuzzy rules. Finally, defuzzification of 
these summed values develops the index. 
Relative importance for quality parameters was 
not considered in this study. 
Duque et al., (2006) also used the fuzzy inference 
system to assess the river water quality. The 
relative importance of water quality indicators 
involved in the study was dealt with the Analytic 
Hierarchy Process (AHP) (Saaty, 1988) method 
using pairwise comparison.
In the FSE method, the weights of water quality 
parameters are determined empirically or by using 
the pair-wise comparison method. These methods 
which are based on the subjective importance 
of different indicators are dependent on human 
judgments and biases; thus the possibility of 
expert’s misjudgments could be increased 
(Chowdhury and Husain, 2006).
The entropy theory which initially emerged 
from thermodynamics was introduced into 
the information theory by Shannon (1948). 
In information theory, the disorder degree of 
a system is measured. The larger values of 
entropy indicate more randomness and thus less 
information is expressed by data (Zeleny, 1982). 
It can measure uncertainties and the extent of 
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useful information provided by data. Therefore, 
entropy is an objective means of defining the 
weights of water quality parameters or indicators 
based on the useful information in the available 
data. 
Chen et al., (2008) applied entropy weight 
coefficients for the attributes of a model for 
the groundwater quality assessment. In another 
study Zhi-hong et al., (2006) used the entropy 
method for determination of weight of evaluating 
indicators in water quality assessment of a river. 
In both studies, the results were found more 
reliable since the entropy weight of each criterion 
overcomes the subjectivity of expert evaluation. 
However, it does not seem that considering the 
weights only based on entropy values without 
expert judgment would be sufficient. Chowdhury 
and Husain (2006) applied a methodology 
to health risk management of different water 
treatment technologies using the entropy and 
fuzzy set theories applied in a multi - attribute 
decision making technique. In their study, the 
weights of the attributes were determined based 
on a combined approach using the AHP method 
as a mean of measuring the subjective weight and 
the concept of entropy determining the objective 
weight of the attributes.
In the previous studies, in the context of the fuzzy 
evaluation methods, less attention was given to 
the weight of indicators. In some other studies 
such as Lu et al., (1999) only it was considered 
in the framework of the AHP process. The 
shortcomings of these approaches have been on 
their reliance on expert attitude and judgment 
about the weight of each indicator. There are 
many redundancies and misjudgments that cannot 
be captured through AHP process. Applying the 
concept of entropy and integrating the objective 
and subjective measure of weights proposed by 
Chowdhury and Husain (2006) is not considered 
in the previous fuzzy evaluation of water quality 
classification studies especially trophic status 
assessment.
In this study, an entropy-based fuzzy synthetic 
evaluation method is developed to capture the 
randomness and uncertainties in the input data 
in order to analyze the trophic status. Fuzzy 
membership functions are defined for selected 
water quality indicators and the weights of the 

indicators are determined using the entropy based 
and AHP methods.

MATERIALS AND METHODS
The developed methodology is mainly comprised 
of a typical three-step process of fuzzification, 
aggregation, and defuzzification which is 
commonly used in the fuzzy-based decision 
making problems. The target of the proposed 
approach is to interpret observations to different 
trophic levels. In fuzzification, the fuzzy 
membership function for the trophic indicators 
is defined based on the criteria used for the 
trophic state classification. Aggregation is the 
grouping process of fuzzy sets by establishing 
an evaluation matrix. Finally, to interpret the 
fuzzy results to crisp numbers, defuzzification 
technique is applied. Fig.1 illustrates the steps of 
the methodology which are further discussed in 
the following sections.

















 





 
 









Fig.1: Flowchart of the proposed methodology for Entropy- based 
Fuzzy Eutrophication Index (EFEI)
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Determination of trophic indicators
In several approaches for the establishment of 
trophic state classification system, the values of 
certain measured water quality parameters (e.g., 
total phosphorus, chlorophyll a, etc.) have been 
used as trophic indicator. Ideally, observed water 
quality values can be compared to the established 
classification systems to determine the trophic 
status of any particular waterbody. (USEPA, 
1999)
The trophic indicators applied in most of trophic 
classification systems are chlorophyll a, total 
phosphorous (TP), total nitrogen (TN), secchi 
depth (SD) and hypolimnetic oxygen saturation 

percentage (HO%) (Novotny and Olem, 1994; 
Chapra, 1997; Vollenweider and Kerekes, 1980; 
USEPA, 1999). 
In inland waters such as lakes and reservoirs, 
typically phosphorus is the limiting nutrient 
rather than nitrogen, because blue-green algae 
can “fix” elemental nitrogen from the water 
as a nutrient source. In marine waters, either 
phosphorus or nitrogen can be limiting (USEPA, 
1999). Therefore, in this study regarding the 
above limitation, total nitrogen was omitted 
from the analysis and four indicators including 
chlorophyll a (Chla), T.P., S.D. and HO% were 
considered in the assessment process.

Table 1: Trophic status classification

*OECD (1982)
**USEPA  (1999)





  






















SD (m)

Fig 2- Bell shaped probability distribution curves for trophic indicators (OECD, 1982):
 (a) Total phosphorous (b) Chlorophyll a (c) Secchi disk

c

a b

Oligotrophic Mesotrophic Eutrophic Water quality indicator 
 range  mean  range  mean  range  mean 

Chlorophyll a 0.3- 4.5 1.7 3-11 4.7 2.7-78 14 
Total phosphorus* 3-18 8 11-96 27 16-390 84 
Secchi depth (m)* 5.4-28 9.9 1.8-8.1 4.2 0.8-7 2.4 
Hypolimnetic oxygen (% of saturation)** >80% 10-80% <10% 
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Select trophic state classification criteria
The OECD (Organization of Economic 
Cooperation and Development) index proposed 
by Vollenweider and Kerekes (1980) was applied 
as the trophic classification criteria, (OECD, 
1982). In the OECD index, statistical approach 
to quantify the ranges of several water quality 
variables is used within each trophic designation 
(Table 1). This index was derived by asking a 
group of experts their opinion as to what was 
the average value for each trophic class for each 
variable. The summarized data were used to 
produce bell-shaped curves for each variable for 
each class of eutrophicaton, Fig. 2 (USEPA, 2000).
The overlap of water quality ranges shown in 
Table 1 and Fig.2 implies that there are some 
fuzzy zones between the eutrophic, mesotrophic, 
and oligotrophic states. It emphasized that 
reservoirs of the same concentrations may be in 
more than one trophic class. For hypolimnetic 
oxygen (percent of saturation) HO%, the limits 
were adopted from USEPA (1999).

Define fuzzy membership functions 
(Fuzzification)
The ranges of variables in Table 1 were 
considered as the criteria to set the fuzzy input 
data. Therefore, the fuzzy limits of the parameters 
and membership functions were derived from 
the OECD index which was approved by EPA 
(USEPA, 1999). 

The fuzzy sets were defined for the three trophic 
levels of eutrophic, mesotrophic and oligotrophic 
using triangular and trapezoidal types. Fig. 3 
shows the typical membership function of trophic 
indicators. As it is shown in the figure, higher 
values of total phosphorous and chlorophyll a 

represent higher degree of eutrophic condition. 
On the other hand, secchi disk  and hypolimnetic 
oxygen saturation percent are at the opposite 
side.
According to this figure, equation (Eq.) (1) 
demonstrates the typical form of the membership 

function for TP and Chla. For SD and HO%, eµ

and oµ  are substituted.
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Table 2: Key values defining the fuzzy limits of the 
membership functions

Where µ is the membership function and 
subscripts e, m  and o stand for eutrophic;, 
mesotrophic, and oligotrophic classes, 
respectively. Table 2 shows a, b and c values 
of different trophic indicators considered in this 
study.
From what is shown in Fig. 3 , the membership 
values of the points a, b and c for each fuzzy set 
of TP and Chla are as follows:
For eutrophic level: 

0)b(,1)c( e\e == µµ

(1)

Fig. 3: Typical membership function of trophic indicators

Trophic indicator Unit a b c 
Chlorophyll a g/L 1.7 4.7 14 
Total phosphorus g/L 8 27 84 
Secchi depth  m 2.4 4.2 9.9 
Hypolimnetic 
oxygen percentage 

(%) of 
saturation 10 45 80 

  












 

 


Chla)
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Element Xik of the evaluation matrix represents 
the ith set of data for the kth indicator. (i=1,2 
,…,m; k=1,2,…, n) (Zeleny, 1982; Hwang and 
Yoon, 1981)

 

The procedure of determining weights of 
indicators is as follows:

Normalization of the elements of the original 1. 
evaluation matrix:

For the sake of having the same scale of 
measurement for the n indicators, it is assumed 
that all the initial entry values in the matrix are 
in the range from 0 to 1. This is achieved by 
normalizing the elements of the initial matrix 
according to the Eq. (5).

 

  

In the above equation the maximum criterion 
refers to the indicator with preferred higher value 
and thus each element is divided by the maximum 
value of kth indicator (maximum value in column 
k in Eq. (4)). On the other hand, the minimum 
criterion means the indicator with preferred 
lower value and the minimum value is divided by 
each element. According to this procedure, it is 

evident that [ ]1,0∈ikr .

Calculating the probability of the criterion to 2. 
occur is defined by pik as:
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For oligotrophic level: 0)b(,1)a( oo == µµ

As mentioned above, for SD and HO%, eµ and 

oµ  are substituted in Eq. (2).

Construction of the fuzzy relationship matrix
Defining the membership functions in the previous 
step, a fuzzy relationship matrix was constructed in 
which the rows are the indicators and the columns 
are trophic state levels. Considering four trophic 
indicators with three trophic levels of eutrophic, 
mesotrophic, and oligotrophic, a matrix of 34×  
was formed as the fuzzy relationship matrix, as 
shown in Eq. (3):

Where subscripts p, c, SD and HO represent 
phosphorous, chlorophyll a, secchi depth 
and hypolimnetic oxygen saturation percent, 
respectively.

Weighing the indicators
The successful application of the FSE technique 
depends on an appropriate weight assignment to 
the indicators involved in the procedure. (Zeleny, 
1982; Qui, 2002,) Weight assignment defines the 
relative importance and influence of the input 
parameters in the final justification. In this study 
an integrative weight was considered to reflect 
both the subjective considerations of a decision 
maker or expert and the objective information. 
The objective weight was calculated from the 
entropy weighing method and the subjective 
weight was derived from the AHP process which 
is discussed in the following section.
Entropy weighing method 
The m set of data for n indicators is used to 
form the evaluation matrix as shown in Eq. (4). 
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Analytical Hierarchy Process weighing method 
The AHP method (Saaty, 1988) is used to calculate 
the subjective importance of the indicators which 
considers the significance of expert's judgment 
and intended use of waterbody. A pairwise 
comparison matrix is established to obtain the 
weight of the indicators. 
The consistency measure of the pairwise 
comparison results is necessary in the subjective 
choice of the weights. In this regard, the 
inconsistency ratio of the matrix is calculated 
according to Eq. (11), (Saaty, 1988):

CRI
CIIR =

 

where CRI  refers to random inconsistency 
coefficient of a nn×  matrix and is presented in 
Table 3 and CI   is the coefficient of inconsistency 
which is calculated according to Eq. (12).

 

where n  is the dimension of the matrix and 

maxλ  is the maximum eigenvalue of the pairwise 
comparison matrix.

Determination of evaluation result matrix 
(aggregation)
The aggregation or grouping process is needed 
to put different fuzzy values of the individual 
indicators into a united indexing model. A 
schematic of grouping process used in this paper 
for four indicators of Chla, TP, SD and HO% 
is shown in Fig.4. To perform the aggregation 
process, various fuzzy reasoning methods have 
been applied by different investigators. The 
method used in this study was similar to the 
weighted average method described by Chang et al., 
(2001). In other words, the aggregation of the 
results was achieved by multiplying the matrix 
of fuzzy membership and weighted vector of 
the n indicators according to Eq. (13), (Lu et al., 
1999):

 

(11)I R C I
CRI

CRI

The entropy measurement of the 3. kth criterion 
(indicator):

Where c represents a constant defined here: 

Calculating the objective importance of the 4. 
indicators as the weight of entropy:

Zeleny (1982) stated that a weight assigned to an 
attribute (indicator or criteria) is directly related 
to the average intrinsic information generated by 
a given set of data in addition to its subjective 
assessment. Based on this, the degree of 

diversification ( kd ) of the information provided 
by kth indicator is defined as the complementary 
of entropy value as shown in Eq. (9).
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Therefore, the objective importance of kth criteria 
is evaluated as:
 

Equations (9) and (10) state that the indicators 
with less entropy values have upper level of 
information content and thus a higher weight is 
assigned to them.

Equation (11) is applied to combine the 5. 
objective importance wk  with the subjective 

importance kλ  to evaluate the integrated 
importance of the kth indicator parameter 
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in which:

be, bm, bo are the components that show the 
membership degree of the reservoir trophic status 
to each level such as eutrophic, mesotrophic and 
oligotrophic.

Defuzzification
Defuzzification is the process of combining 
several partial memberships to produce a 
single numerical value. It is commonly used in 
applications of fuzzy logic to produce a result 
compatible with non-fuzzy approaches and can 
be easily understood without reference to the 
fuzzy set theory. In this study defuzzification is 
achieved through maximizing trophic membership 
in matrix B as shown in Eq. (14). 

 

E represents the predominant trophic level of the 
reservoir water quality, i.e. the highest value of 
membership that determines the overall trophic 
classification. 
The crisp value of the eutrophication level can 
also be determined by assigning coefficients 
(weights) to the memberships of the result matrix 
(B) (Lu et al.,, 1999; Silvert, 2000). Therefore, 
the EFEI value is calculated by Eq. (15) and 
can be plotted versus time to reveal the trend of 
eutrophication.

EFEI emo bbb ×+×+×= 421  

The coefficients are assigned arbitrarily in this 
study and guidelines may be established for the 
EFEI values based on expert opinion (Lu et al., 
1999). The EFEI with the highest value represents 
the most eutrophic condition.

Case Study
The case study is the Satarkhan Reservoir located 
in the Aharchai River watershed in the province 
of East Azerbaijan, north-western Iran. The 

geographic coordinates are 35 46 ′ E and 38° 
28´ N and the altitude of dam site is about 1430m. 
The Satarkhan dam was constructed in 1998 with 
the aims of supplying water for drinking and 
industrial purposes for the city of Ahar and for 
development and remediation of 10,000 hectares 
of downstream agricultural lands. The reservoir 
has a volume of 131 million cubic meter (MCM) 
with normal elevation of 1451 m above sea level 
and an average annual inflow of about 91 MCM/
yr. The maximum depth of the reservoir is 59 
meters and the detention time based on the ratio 
of reservoir normal volume to average flow is 
about 500 days. 
Water quality of the reservoir has deteriorated 
during recent years due to excessive nutrient 
input loads and residential wastewater and 
agricultural drainage in the watershed. Therefore 
the control and detection of the eutrophication 
in the reservoir is of great importance. Many 
water supply problems have been reported since 
the operation of the reservoir such as clogging 
of irrigation pipes, decrease in the time of filter 
backwash in the water treatment plant as well as 
other taste and odor problems. The location of the 
Satarkhan reservoir and the watershed is shown 
in Fig. 5. 

Input data gathering
A monitoring program for the reservoir water 
quality was held from April 2004 to March 2005 
by the regional water authority of East Azerbaijan 
province. The sampling was done monthly and 
a 12 month data set was gathered from that 
period. Therefore, according to the data sampling 
frequency the daily variations of water quality 
parameters has been ignored. Table 4 presents the 
gathered data in detail.

),,max( ome bbbE = (14)E (be, bm, bo)
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Table 3: Random inconsistency coefficient of a n×n matrix 
(Saaty, 1988)
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Water quality parameters that were analyzed 
in the sampling program are dissolved oxygen, 
chlorophyll a, total phosphorous and total 
nitrogen, secchi depth and some other parameters 
such as electric conductivity, anions and cations 
that were not used in the analysis of this study.
The location of sampling was near the dam 
axis and outlet where the water is transferred 
to different users such as urban, agriculture 
and industry. Therefore the water quality is of 
importance in this location. 

     


       
      
      
      
      
      
      
      
      
      
      
      

 Table 4: Water quality data of Satarkhan reservoir during April
2004- March 2005

The measured data was surveyed at three different 
water depths of the reservoir water column. In 
the analysis of different parameters, the value of 
specific depth is needed. As the eutrophication 
occurs at the top layer in the presence of light 
due to algae growth, nutrients data such as total 
nitrogen, phosphorous and chlorophyll a were 

collected from the top layer. For dissolved oxygen 
the data was gathered from the button layer to 
represent the hypolimnetic oxygen saturation 
percent and secchi depth was measured only at 
the top. 
To check the limiting nutrient for eutrophication 
in Satarkhan reservoir, the TN/TP ratio criteria is 
suggested by many scientists such as Volenwieder 
(1982) and Chapra (1997). According to this 
criterion, if the ratio is over 10, the limiting 
nutrient is phosphorous. As shown in Table 4, 
the average TN/TP ratio for 12 months data set 
is calculated about 85. Therefore, phosphorous 
was considered as the limiting nutrient in the 
eutrophication of Satarkhan reservoir. It can be 
as a double check for the assumption in criteria 
selection which was previously discussed.

RESULTS 
Based on available data (Table 4), there were 12 
series of monthly data (m=12) and 4 indicators 
(n=4). It can be considered as the primary form 
of the evaluation matrix in the entropy weighing 
method. The weights are computed based on the 
entropy value of the indicators as follows:

[ ]HOSDPC wwwwW = = [0.49    0.13    

Eq.(16) shows the objective importance weight 
of the indicators in this analysis. The results show 
that chlorophyll a, contains the highest amount of 
useful information with the least entropy content 
and the secchi disk depth is the parameter with 
the least amount of available information and the 
highest entropy in the data set. The trophic level 
was determined based on the indicators with the 
least degree of uncertainty and the highest level 
of information. This can result in a more robust 
decision making process. Moreover, the AHP 
method was used to calculate the subjective 
importance of the indicators which considers the 
significance of expert's judgment and intended 
use of waterbody. 
Due to limited number of experts in reservoir 
water quality subject, six experts were selected in 
this survey: two university professors, specialist 
in water quality management, two experts from 
consulting engineer with over ten years of 

W*=[W*
C  W*

P  W
*

SD  W*
HO ] [0.49   0.13  0.08  0.30]=

(16)








Fig.. 5: Aharchai River and Satarkhan reservoir watershed 
in East Azerbaijan – north-western Iran
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experience, and two from the East Azerbaijan 
Water Authority, expert in reservoir operation 
and water treatment. They were invited in a 
session and after being presented to the results 
of sampling and the facts about the parameters 
mentioned in the references, the priority of 
the parameters was discussed. The questions 
were regarding the pairwise comparison of the 
importance between the parameters. The answers 
were limited to three levels: equal, moderate 
and strong and the equivalent numbers for these 
three levels were 1, 2 and 3, respectively. The 
discussion was held to achieve a consensus on 
the coefficients of pairwise comparison which 
was finally validated through calculating the 
coefficient of inconsistency according to Eq. 
(11). Therefore, the pairwise comparison matrix 
for selected indicators is shown as Eq.(17).

 

The value of the inconsistency ratio was 0.01 (less 
than 10%) which shows the acceptable scores of 
judgment.
After the normalization of the columns and 
calculating the row means, the weight vector (λ ) was 
calculated through the AHP process,as follows:

[ ]HOSDPC λλλλλ = = [0.45   0.27    0.14    

The integrated weight vector ( *W ) using Eq. (19) 
will be as follows:

Since chlorophyll a is estimated both subjectively 
and objectively as the most important parameter 
in this analysis, the integrated weight of this 
parameter has been assigned as the highest 
value. Thus, the eutrophication level is mostly 

determined based on the variation of chlorophyll 
a, in the reservoir. On the other hand, secchi depth 
has the least variation rate in this study.
The integrated weight vector also shows that 
hypolimnetic oxygen is more important than total 
phosphorous which is different from what was 
expressed by experts in the pairwise comparison 
matrix.
Table 5 shows the results of membership values 
from evaluation matrix for three levels of trophic 
status which is illustrated in Fig. 6. Fig. 7 shows 
the monthly variation of Tropic State Index 
(TSI). The dominant trophic level according to 
Eq. (14) is specified in Table 5. The EFEI values 
are shown in Table 5 and Figs. 8 and 9.
The results show that critical months for 
eutrophication occur in autumn and spring after 
the overturning phenomena. Two months of 

λ =[λC  λP   λSD  λHO ] =[0.45   0.27  0.14  0.14]
(18)

W*

(19)

W*=[W*
C  W*

P  W
*
SD  W*

HO ] [0.71   0.11  0.04  0.14]=



   

 

     
     
      
      
     
     
     
     
     

      
      

     

Table 5. Trophic status classification and EFEI values




















=

115.033.0
115.033.0
2215.0
3321

%

%

HO

SD

TP

Chla

HOSDTPChla

A

Chla   TP   SD  HO%
Chla   

TP  
SD  

HO%

A=
(17)

January and February during winter stratification 
were assessed as oligotrophic condition mainly 
because of low concentration of chlorophyll a. 
Also in June, the oligotrophic condition occurs 
because of low concentration of both chlorophyll 
a and total phosphorous, high measured secchi 
depth and hypolimnetic oxygen. But the main 
strength of the results is that the trophic level 
in each month is expressed with a degree of 
certainty; i.e. the oligotrophic condition in June 
with 0.6 as membership value, has less degree 
of certainty than for the same trophic condition 
in winter months with a 0.8 membership value. 
In the summer, the dominant trophic level is 
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mesotrophic with a certainty level about 60 % 
as shown in Table 5. It can also be stated that in 
summer months the reservoir is eutrophic with a 
certainty of 20-40%.
Therefore, the proposed classification system is 
a realistic method to classify the trophic status 
of a reservoir which considers the uncertainties 

involved in various steps through the entire 
evaluation process. The uncertainty due to data 
measurements is regarded by the entropy concept 
while the uncertainty in the limits of different 
trophic levels and the vagueness embedded in the 
decision making output values is dealt with by 

(20)

Fig.6: Fuzzy membership values of three trophic state class

Fig.7: Monthly variation of Trophic State Index  (TSI)

0.0

20.0

40.0

60.0

80.0

100.0

1 2 3 4 5 6 7 8 9 10 11 12

Month

TS
I

TSI(TP) TSI(SD) TSI(Chla)

Hypertrophic

Oligotrophic

Eutrophic

Mesotrophic

0.0

0.2

0.4

0.6

0.8

1.0

Apr.
2004

May Jun Jul Aug Sep Oct Nov Dec Jan.
2005

Feb Mar.

Month

Fu
zz

y 
m

em
be

rs
hi

p 
V

al
ue

be bm bo

`

v



M. Taheriyoun, et al., DEVELPOMENT OF AN ENTROPY ...

12

the fuzzy set theory.  To evaluate the utility of 
the index, a comparison with the Carlson Trophic 
Status Index (TSI) is made here.

Trophic Status Index (TSI)
A frequently used biomass-related trophic 
status index was developed by Carlson (1977). 
Carlson’s trophic status index (TSI) uses secchi 
depth, chlorophyll a, and total phosphorus, each 
producing an independent measure of trophic 
state. Index values range from approximately 0 
(oligotrophic) to 100 (hypertrophic). The Carlson 
index is calculated based on the following 
equations (Carlson, 1977):

TSI(Chla)=30.6+9.81 Ln(Chla)
TSI(TP)=4.15+14.42 LN(TP)
TSI(SD)=60-14.41 LN(SD)

Fig. 8 illustrates the variation of TSI values for 
each indicator. The line limits of trophic classes 
used in the Carlson index is also shown in this 
figure. In this index, the relative importance of 
the indicators is not considered and the limits 
between the classes are crisp. So the imprecision 
or vagueness included in the boundaries is not 
accounted for. 

As shown in Fig. 8, the results of TSI values 
are classified into different levels dependent on 
the parameter used in the formula. Based on the 
total phosphorous, the reservoir is hypertrophic 
in most months of the year. But according to 
the other parameters, the reservoir is mostly in 
mesotrophic and eutrophic class. This may be a 
potential source of debate and conflict between 
decision makers and stakeholders in a watershed 
to decrease the nutrient load of the reservoir in a 
TMDL process. On the other hand, TSI cannot 
deal with uncertainties involved at various steps 
in the decision-making process. Therefore, despite 
the wide use of the TSI (Carlson index), it cannot 
be an efficient and realistic tool in reservoir water 
quality management. 
To evaluate the validation of EFEI, a comparison 
has been made with average TSI values (Fig. 9). 
The trends of monthly variation of EFEI show a 
good agreement with TSI. The main advantage of 
the EFEI over TSI is that the predicted intensity 
variation in different months seems more realistic 
as it considers the fuzziness within the limits of 
trophic classes.
Fig. 9 presents a comparison between the EFEI 
index and the fuzzy index developed by Lu et al., ( 
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Fig.8: Entropy Fuzzy Eutrophication Index (EFEI) and average TSI monthly variations



Iran. J. Environ. Health. Sci. Eng., 2010, Vol. 7, No. 1, pp. 1-14

13

1999) which does not consider the entropy weight 
of the indicators. As it can be seen in this figure, 
the trends are slightly similar but the values are 
different. In most of the months, EFEI shows a less 
intensity of eutrophication than the fuzzy index. 
Also the curve of fuzzy index with equal weights 
of indicators in Fig. 9 shows greatly the influence 
of the weights on index value which shows the 
trophic intensity. Since in the EFEI calculations 
the weight of the indicators has been selected 
based on both the amount of useful information 
as determined by using entropy theory and the 
expert judgment determined by the AHP process, 
this index is more reliable.

The robustness of the proposed entropy fuzzy 
model comes from the ability to integrate different 
kinds of quality observations considering the 
objective and subjective information included 
in the data and measurements and in the entire 
evaluation process. This procedure gives a broader 
perspective to reservoir managers and decision 
makers to assess the trends and conditions of the 
trophic status in the reservoir.
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Fig. 9: EFEI value and average TSI monthly variations

DISCUSSION
An Entropy- Fuzzy Eutrophication Index called 
EFEI was developed in this study for determination 
of the trophic status of the Satarkhan Reservoir. 
The fuzzy set theory was used to consider the 
imprecision and vagueness within the limits of 
trophic classes. The fuzzy membership functions 
were defined based on the criteria and indices 
introduced by EPA and OECD with four quality 

indicators consisting of chlorophyll a, total 
phosphorous, secchi depth and hypolimnetic 
oxygen. The entropy theory which is a measure of 
the uncertainty in a data set was used to define the 
relative importance of the selected indicators as 
measured by their entropy. As entropy expresses 
the amount of chaos and lack of useful information 
within the data structure, the calculated weight 
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coefficients state the relative importance of the 
indicators in an objective fashion. To consider the 
relative importance of the parameters based on 
expert judgment, the AHP method was also used 
to show the subjective importance of indicators. 
Therefore, the final weight coefficients of the 
indicators were obtained by integrating the 
objective and subjective weights computed from 
the entropy and AHP methods, respectively.
Fuzzy membership functions and the weight of 
each indicator are aggregated by calculating the 
final evaluation matrices for trophic levels which 
show the degree of membership of the reservoir 
water quality status to each trophic class. 
The results of the entropy- fuzzy index show 
the uncertainty of each trophic level. This 
method is useful when dealing with missing 
data or unreliable information by measuring 
the entropy content of indicator values. In this 
way, the best indicators for differentiating the 
trophic levels are chosen and their impact on the 
process is proportionally weighted. Therefore, 
the evaluation process would be more accurate 
and reasonable. The EFEI in comparison with 
TSI and the fuzzy index without entropy weight 
shows a more consistent trend in detecting the 
monthly variation of trophic levels. The EFEI 
proposed in this study can be used as an effective 
tool in eutrophication management of reservoirs. 
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