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ABSTRACT 

The water industry is facing increased pressure to produce higher quality treated water at a lower cost. The 
efficiency of a treatment process closely is related to the operation of the plant. To improve the operating 
performance, an Artificial Neural Network (ANN) paradigm has been applied to a water treatment plant. An 
ANN which is able to learn the non-linear performance relationships of historical data of a plant has been 
proved to be capable of providing operational guidance for plant operators. A back-propagation network is 
used to determine the alum and polymer dosages. The results showed that the ANN model was most 
promising. The correlation coefficients (r) between the actual and predicted values for the alum and polymer 
dosages were both 0.97 and the average absolute percentage errors were 4.09% and 8.76% for the alum and 
polymer dosages, respectively. The application of the ANN model was illustrated using data from Wyong 
Shire Council’s Mardi Water Treatment Plant on the Central Coast of NSW. 

Keywords: Intelligent system, Artificial neural network, Water treatment plant operation, Coagulation                
dosage  

INTRODUCTION 
 
Water treatment involves physical, chemical 
and biological changes that transform raw water 
into potable water. The treatment process used 
depends on the quality and nature of the raw 
water. Water treatment processes can be simple, 
as in sedimentation, or may involve complex 
physicochemical changes, such as coagulation. 
The water treatment system at the Mardi plant 
 
*Correspondence: E-mail: rsepassi@engineer.com 
Tel: +98 21 664432462, Fax: +98 21 66419984  

consists of rapid mixing of chemicals with the 
raw water, followed by slow mixing in which 
the growth of particles is promoted. Finally, the 
solids and liquid are separated using granular 
filtration processes. Figure 1 shows the Mardi 
water treatment system. The non-ionic polymer 
and alum used here are coagulants whose pur-
pose is basically to promote the coagulation and 
flocculation of particles. The coagulant dosage 
required for particular water depends on the in-
fluent characteristics such as turbidity, colour, 
pH and alkalinity as well as other fluid and sus-
pension characteristics. 
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Mardi Dam Rapid Mixer Flocculator Filter Clear Water Tank

Fluoride Chlorine, 
Carbon  dioxide, Lime 

Filter Media 

Chlorine 
Alum, Polymer 
Lime,     Mixers 

Effluent

Chemical DosageChemical Dosage

Fig. 1: Flow Diagram for Mardi Water Treatment Plant 
 
The water industry is seeking ways to produce 
high quality water at a reduced cost. The opera-
tion of water treatment plants is significantly 
different from most manufacturing industrial 
operations because raw water sources are often 
subject to natural perturbations. Consequently, 
the water quality characteristics are variable at 
different periods. An algorithm to precisely pre-
dict chemical dosages for optimum treatment 
using measured influent parameters does not 
exist at many water treatment plants. Without a 
precise knowledge of the characteristics of the 
material to be removed, most chemical dosage 
requirements for primary water treatment are 
determined from experimental laboratory tech-
niques (jar tests), which are conducted at regu-
lar time intervals.  
To ensure good effluent quality, an operator 
must adjust the alum and polymer doses in con-
cert with the influent changes which occur over 
time. Adjustments are usually made once in 
every 24 hours. Excessive coagulant overdosing 
leads to increased treatment costs and public 
health concerns. High levels of residual alu-
minium have been linked to several medical 
disorders including osteomalacia, dialysis en-
cephalopathy syndrome, Alzheimer’s disease 
and renal failure (Ossenbruggen, 1985). Under-
dosing leads to a failure to meet water quality 
targets and the less efficient operation of the 
water treatment plant. 
An artificial neural network approach for set-
ting chemical dosage levels, based on the water 
treatment parameters, is being investigated. A 

predictive model is developed by determining 
the correlation between water treatment pa-
rameters and the chemical dosage levels from a 
plant with a history of effective water treatment. 
Two previous studies by Anthony (1992) and 
Baba (1996) show the effectiveness potential of 
such an approach. 
This paper describes the ANN analysis of daily 
treatment records covering a five year period at 
the Mardi Water Treatment Plant which was 
used to model the daily dosages of polymer and 
alum. 
 
MATERIALS AND METHODS 
 
1. Artificial Neural Network     ANNs are a 
means of computation based on a contemporary 
understanding of the biological nervous system. 
They are able to model the non-linear relation-
ships between parameters and are constructed 
from several layers of processing elements 
(PEs) or neurones, as depicted in Fig. 2. These 
PEs are interconnected and the strength of their 
interconnections are denoted by parameters 
called weights. These weights are adjusted, de-
pending on the task, to improve performance, 
that is, the accuracy of prediction made by the 
ANN. The first layer, called the input layer, 
consists of PEs which simply takes on the input 
values of a pattern. The last layer is termed the 
output layer and produces the pattern outputs. 
The layer or layers between them are called 
hidden layers. The hidden layers also consist of 
PEs and carry out several calculations.  Firstly, 
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they multiply all inputs by a weight, add a con-
stant value (or bias θj) and then sum the result 
(Ij). That is:      Ij = ∑ Wji Xi + θj
Where Wji are the connection weights between 
PEs, Xi are the inputs and. In the second calcu-
lation phase carried out by the PE, the output Yi 

is calculated using a non-linear transfer function 
(eg sigmoid or hyperbolic tangent).   
 Yj = ƒ (Ij) 
The output of a PE can be connected to the in-
put of other PEs (NeuralWare, 1994; Freeman, 
1997). This process is shown in Fig 3.

 

Fig.  2: Typical artificial neural network 
 

The most common type of ANN is the Back-
Propagation Network (BPN). The governing 
equations for a BPN were developed by Rumel-
hart and McClelland (1998). The BPN is able to 
model the non-linear relationship between pa-

rameters by relating the desired output parame-
ter values to the known input parameter values. 
A BPN is a multi-layer, feed forward network 
consisting of fully connected PEs, and was used 
in this study. 

 

ANN model development  All ANN models 
were developed using the commercially avail-
able software package Neural Works Profes-
sional II/PLUS (1994). The ANN models which 

were constructed to determine the significant 
input parameters consisted of three or four lay-
ers of feed forward network. The following 47 
input variables were used where the subscript‘t’ 
refers to the current day. 
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Fig. 3: A single PE in a network 
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pH (t), pH(t-1) , . . . , pH(t-6) 
Turbidity (t), Turbidity (t-1), . . . , Turbidity (t-6) 
Apparent Colour (t), Apparent Colour (t-1), . . . ,
Apparent Colour(t-6) 
True Colour (t), True Colour (t-1), . . . , True Col-
our(t-6) 
Temperature (t), Temperature (t-1), . . . , Tem-
perature(t-6) 
Polymer Dosage (t-1), Polymer Dosage (t-2), . . . ,
Polymer Dosage(t-6) 
Alum Dosage (t-1), Alum Dosage (t-2), . . . , Alum 
Dosage(t-6) 
The output variables were Alum Dosage (t) and 
Polymer Dosage (t).
The ANN employs a supervised learning algo-
rithm referred to as the cumulative delta rule. 
Two thirds and one sixth of the 1820 days of 
(available) data were chosen for training and 
testing. For example, the first and second, 
fourth and fifth, seventh and eighth days and so 
on were used for training and the sixth, twelfth, 
eighteenth days and so on were used for testing. 
Several ANN models with one and two hidden  
layers were tested in order to determine the best 
ANN which consisted of ten  PEs  contained  in  
 

one hidden layer. The training rate, momentum 
and epoch size were 0.8, 0.2 and 16, respec-
tively. In order to obtain the best training itera-
tion, training was stopped at intervals of thou-
sand iterations and the testing set was presented 
to the ANN. The root mean square (RMS) error 
was then calculated. The minimum RMS error 
was obtained at a learning iteration of thirty 
four thousand during the training period. 
A sensitivity analysis was carried out in order to 
decrease the number of inputs. All parameters 
with a relative significance of more than 5%,
were selected as significant inputs. The signifi-
cant inputs are parameters which can be effec-
tive for the prediction of the alum and polymer 
dosages. As can been seen in Fig. 4, nine inputs 
were of significance. These inputs were appar-
ent colour with lags of 0 and 2 d, polymer dos-
age with lags of 1, 2 and 3 d and alum dosage 
with lags of 1, 2, 3 and 4 d. The prefixes ‘RW’ 
& ‘TW’ used in the annotation of the variables 
along the horizontal axis, denote ‘Raw water’ & 
‘Treated water’, respectively. 
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RESULTS  
 
The nine inputs with relative significance val-
ues greater than 5% were selected as inputs for 
the prediction of the polymer and alum dosages.  
The training and testing sets with nine inputs 
were presented to several combinations of one 
and two hidden layered BPN models to deter-
mine the best configured ANN model.  
The ANNs were trained using 70000 iterations. 
This process took 15 min to complete on the 
PC. The numbers of PEs in the first and second 
hidden layers were 25 and 5, respectively. The 
training rate for the first and second hidden lay-
ers, output layer, momentum and epoch size 
was 0.8, 0.7, 0.15, 0.4 and 16, respectively. In 
order to obtain the best training iteration, train-
ing was stopped at intervals of every 1000 itera-
tions and  the  testing set was then  presented  to 

the ANN. The minimum RMS error was ob-
tained at the training of iteration of 67000 dur-
ing the training period. Figs. 5 and 6 show the 
actual and predicted values of alum and poly-
mer dosage.  
The statistical parameters listed in Table 1 indi-
cate the artificial neural network produces reli-
able forecasts of alum and polymer dosages 
based on historical input data. 
 

Table 1: Best results obtained from ANNs 
 

Statistical 
Parameters 

Correlation 
Coefficient 

(r) 

Average 
Absolute 

Error 

Average 
Absolute 
%Error 

RMS 
Error 

Non-ionic 
Polymer 0.97 0.0048 8.76 0.006

7

Alum 0.97 1.08 4.09 1.53 

Fig. 3: Comparison of actual and predicted alum dosages 
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Fig. 4: Comparison of Actual and predicted polymer dosage 

 
DISCUSSION 
 
The operation of water treatment plants can be 
made more effective by using a predictive 
model. The application of the ANN model is 
demonstrated for the case of the Mardi Water 
Treatment Plant using 5 years of influent water 
quality records. As shown in the study, the 
ANN based on a BPN algorithm does predict 
the alum and polymer dosages reasonably well. 
This conclusion is in agreement with the ANN 
experiment of Daniell (1991). The correlation 
coefficients ‘r’ between the actual & predicted 
values for the alum and polymer dosages was 
both 0.97. The corresponding average absolute 
percentage error was 4.09% and 8.76%. The 
relatively high correlation coefficients indicate 
that the ANN has been successful in encapsu-
lating the knowledge and experience of the staff 
operating water treatment plant. The perform-
ance of the network is dependent on the quality 

and completeness of data provided for ANN 
training. As such, continuous updating of train-
ing data would certainly improve the perform-
ance of the ANN. Improved methods for calcu-
lating treatment dosages will result in fewer 
plant upsets and more consistent water quality. 
More importantly, use of ANN, could result in a 
reduction in the operating costs. 
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